skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeffrey, Christopher S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The discovery of bioactive natural products is often challenged by the complexity of isolating and characterizing active compounds within diverse mixtures. Previously, we introduced a 1H NMR-based weighted gene correlation network analysis (WGCNA) approach to identify spectral features linked to growth inhibitory activity of Piper (Piperaceae) leaf extracts against model plant, fungal, and bacterial organisms. This method enabled us to prioritize specific spectral features linked to bioactivity, offering a targeted approach to natural product discovery. In this study, we validate the predictive capacity of the WGCNA by isolating the compounds responsible for the bioactivity-associated resonances and confirming their antifungal efficacy. Using growth inhibition assays, we verified that the isolated compounds, including three novel antifungal agents, exhibited significant bioactivity. Notably, one of these compounds contains a rare imidazolium heterocyclic motif, marking a new structural class in Piper. These findings substantiate the 1H NMR-based WGCNA as a reliable tool for identifying structural types associated with biological activity, streamlining the process of discovering bioactive natural products in complex extracts. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. A novel meroterpenoid cabagranin D was isolated with related neolignans cabagranins A–C from the leaves ofPiper cabagranum(Costa Rica). Cabagranins A–C represent the first examples of 3,3′-neolignans isolated from the plant genusPiper, and the meroterpenoid cabagranin D displays an unprecedented Diels–Alder conjugate of an unsubstituted phenylpropenone and α-phellandrene. Details of the full structural elucidation of these compounds and a discussion of their potential biosynthetic relationships are presented. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract An increasing number of ecological studies have used chemical diversity as a functionally relevant, scalable measure of phytochemical mixtures, demanding more rigorous attention to how chemical diversity is estimated. Most studies have focused on the composition of phytochemical mixtures and have largely ignored structural concerns, which may have greater importance for ecological function. Here, we explore the development of structural complexity and compositional diversity resulting from different biotic and abiotic interactions inPiper kelleyiTepe (Piperaceae). We also describe how variation in structural complexity and compositional diversity differs between two congeners,P. kelleyiandP.reticulatum. To better interpret these results, we have developed a framework for interpreting these dimensions of chemical diversity in phytochemical mixtures.We used the tropical shrub,P.kelleyi, as a model system to examine interactions between ecological factors and dimensions of phytochemical diversity. We also compared compositional diversity and metabolic complexity inP. kelleyiandP. reticulatumusing liquid chromatography and1H NMR, respectively, to examine trade‐offs between compositional diversity and structural complexity. A framework is provided to generate meaningful estimates of the structural complexity of phytochemical mixtures as measured by1H NMR.Piperis an abundant plant genus that supports diverse insect communities throughout the tropics. Subtle changes in understorey forest light were associated with increases in herbivory that directly increased compositional diversity and indirectly decreased structural complexity inP. kelleyi. This was attributed to the production of oxidation products resulting from herbivory‐driven decomposition of structurally complex defence compounds. This type of complex result would remain undetected using standard chemical ecology approaches and accounts for the detailed molecular changes that are likely to affect species interactions.Synthesis. Our quantitative framework provides a method for considering trade‐offs between structural complexity and compositional diversity and the interpretation of analytical approaches for each. This methodology will provide new theoretical insights and a more sophisticated model for examining the ecology and evolution of chemically mediated interactions. 
    more » « less
  6. Abstract Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant–herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant–insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1H‐NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity amongPiperplants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity ofPiperleaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant–insect interactions and tropical plant species richness. 
    more » « less